Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Phys Eng Express ; 6(6)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35046148

RESUMO

Dosimetry of small fields (SF) is vital for the success of highly conformal techniques. IAEA along with AAPM recently published a code of practice TRS-483 for SF dosimetry. The scope of this paper is to investigate the performance of three different detectors with 10 MV with-flatting-filter (WFF) beam using TRS-483 for SF dosimetry and subsequent commissioning of the Eclipse treatment planning system (TPS version-13.6) for SF data. SF dosimetry data (beam-quality TPR20,10(10), cross-calibration, beam-profile, and field-output-factor(F.O.F)) measurements were performed for PTW31006-pinpoint, IBA-CC01 and IBA-EFD-3G diode detectors in nominal field size (F.S) range 0.5 × 0.5cm2to 10 × 10 cm2with water and solid water medium using Varian Truebeam linac. However, Eclipse-TPS commissioning data was acquired using IBA-EFD-3G diode, and absolute dose calibration was performed with FC-65G detector. The dosimetric performance of the Eclipse-TPS was validated using TLD-LiF chips, IBA-PFD, and IBA-EFD-3G diodes. Dosimetric performance of the PTW31006-pinpoint, IBA-CC01, and IBA-EFD-3G detectors was successfully tested for SF dosimetry. The F.O.Fs were generated and found in close agreement for all F.S except 0.5 × 0.5cm2. It is also found that TPR20,10(10) value can be derived within 0.5% accuracy from a non-reference field using Palmans equation. Cross-calibration can be performed in F.S 6 × 6 cm2with a maximum variation of 0.5% with respect to 10 × 10cm2. During profile measurement, the full-width half-maxima (FWHM) of F.S 0.5 × 0.5cm2was found maximum deviated from the geometric F.S. In addition, Eclipse-TPS was commissioned along with some limitations: F.O.F below F.S 1 × 1cm2was ignored by TPS, PDD and profiles were dropped from configuration below F.S 2 × 2 cm2, and F.O.F which does not satisfy the condition 0.7 < A/B < 1.4 (A and B are FWHM in cross-line and in-line direction) have higher uncertainty than specified in TRS-483. Validation tests for Eclipse-TPS generated plans were also performed. The measured dose was in close agreement (3%) with TPS calculated dose up to F.S 1.5 × 1.5cm2.


Assuntos
Fótons , Radiometria , Calibragem , Aceleradores de Partículas , Fótons/uso terapêutico , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...